Abstract

Compulsive alcohol use, or drinking that persists despite negative or aversive consequences, is a defining characteristic of alcohol use disorder. Here, chemogenetic technology (i.e. Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) was used to inhibit or excite the NAc core or selectively inhibit D1-or D2 receptor-expressing neurons in the NAc core to understand the role of the NAc core and how these subpopulations of neurons may influence compulsive-like ethanol (EtOH) drinking using C57BL/6J, Drd1-cre, and Drd2-cre male and female mice. Compulsive-like EtOH drinking was modeled with a two-bottle choice, drinking in the dark paradigm. The major finding of this study was that mice decreased compulsive-like EtOH intake when the NAc core was inhibited and there was no change of EtOH + quinine intake when the NAc core was excited. Interestingly, inhibition of D1-or D2 receptor-expressing neurons did not alter compulsive-like EtOH intake. Control experiments showed that NAc core excitation and selective inhibition of D1-or D2-receptor-expressing neurons had no effect on baseline EtOH drinking, intake of water, or intake of quinine-adulterated water. CNO reduced amphetamine-induced locomotion in the D1-CRE+ (but not the D2CRE+) group in a control experiment. Finally, pharmacological antagonism of D1 and D2 receptors together, but not separately, reduced quinine-resistant EtOH drinking. These results suggest that the NAc core is a critical region involved in compulsive-like EtOH consumption, and that both D1-and D2 receptor-expressing medium spiny neurons participate in controlling this behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call