Abstract

There is limited understanding of how the microbiota colonizing various maternal tissues contribute to the development of the neonatal gut microbiota (GM). To determine the contribution of various maternal microbiotic sites to the offspring microbiota in the upper and lower gastrointestinal tract (GIT) during early life, litters of mice were sacrificed at 7, 9, 10, 11, 12, 14, and 21 days of age, and fecal and ileal samples were collected. Dams were euthanized alongside their pups, and oral, vaginal, ileal, and fecal samples were collected. This was done in parallel using mice with either a low-richness or high-richness microbiota to assess the consistency of findings across multiple microbial compositions. Samples were analyzed using 16S rRNA amplicon sequencing. The compositional similarity between pup and dam samples were used to determine the contribution of each maternal source to the composition of the neonate fecal and ileal samples at each timepoint. As expected, similarity between neonate and maternal feces increased significantly over time. During earlier time-points however, the offspring fecal and ileal microbiotas were closer in composition to the maternal oral microbiota than other maternal sites. Prominent taxa contributed by the maternal oral microbiota to the neonate GM were supplier-dependent and included Lactobacillus spp., Streptococcus spp., and a member of the Pasteurellaceae family. These findings align with the microbial taxa reported in infant microbiotas, highlighting the translatability of mouse models in this regard, as well as the dynamic nature of the GM during early life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.