Abstract

This paper presents an application of the rock engineering system (RES) in an attempt to assess the proper landslide parameters and estimate the instability index, using two disastrous landslides in Greece which took place in Panagopoula (1971) and Malakasa (1995). RES has been developed by Hudson (Rock engineering systems: theory and practice. Ellis Horwood Limited, 1992) to determine interaction of a number of parameters in rock engineering design and calculate instability index for rock slopes. In this paper, an attempt is made to prove, how RES can be implemented in large-scale instability areas where natural slopes are associated with a variety of geomaterials (soils, rocks, weathering mantle, etc.), by selecting each time the most appropriate parameters that are relevant to the ad hoc potential slope failure and which can be quantified easiest than those of time and money consuming ones. RES approach allows the utilization of those parameters which are particularly active at the site, evaluates the importance of their interactions, taking into account the particular problems at any investigated site. The instability index for both study areas were calculated and found 89.47 for Panagopoula site and 81.59 for Malakasa (out of 100). According to the classification for landslide susceptibility by Brabb et al. (Landslide susceptibility in San Mateo County, California, 1972), both the examined case studies are classified as landslides, approving their existence as two serious slope failures. Thus, RES could be a simple and efficient tool in calculating the instability index and consequently in getting the prognosis of a potential slope failure in landslide susceptible areas, for land use and development planning processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.