Abstract

Wheat flour noodles are sometimes fortified with β-glucan for nutritional value, but this can decrease eating quality. The contributions of β-glucan and starch molecular fine structure to physicochemical properties of wholemeal oat flour and to the texture of oat-fortified white salted noodles were investigated here. Hardness of oat-fortified noodles was controlled by the longer amylopectin chains (DP ≥ 26) and amount of longer amylose chains (DP ≥ 1000). Higher levels of β-glucan, in the range from 3.1 to 5.2%, result in increased noodle hardness. Pasting viscosities of wholemeal oat flour positively correlate with the hardness of oat-fortified noodles. The swelling power of oat flour is not correlated with either pasting viscosities of oat flour or noodle hardness. Longer amylopectin chains and the amount of longer amylose chains both control the pasting viscosities of oat flour, which in turn affect noodle texture. This provides new means, based on starch and β-glucan molecular structure, to choose oats with optimal starch structure and β-glucan content for targeted oat-fortified noodle quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.