Abstract

The source of trifluoroacetic acid (TFA) has long been a controversial issue. Fluoropolymer thermolysis is expected to be a potential anthropogenic source except for CFC alternatives. However, its TFA yield and contributions have rarely been reported more recently. In this study, we investigated the thermal properties of three kinds of fluoropolymers, including poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and poly (tetrafluoroethylene) (PTFE). A laboratory simulation experiment was then performed to analyze the TFA levels in the thermolysis products and hence to examine the TFA yields of these fluoropolymers. Thermolysis of these fluoropolymers occurred in the temperature ranges from ∼400 °C to ∼650 °C, with the peak weight loss rate at around 550–600 °C. TFA could be produced through fluoropolymer thermolysis when being heated to 500 °C and above. Average TFA yields of PTFE, PVDF-HFP and PVDF-CTFE were 1.2%, 0.9% and 0.3%, respectively. Furthermore, the contribution of fluoropolymer thermolysis and CFC alternatives to rainwater TFA in Beijing, China was evaluated by using a Two-Box model. The degradation of fluoropolymers and HCFCs/HFCs could explain 37.9–43.4 ng L−1 rainwater TFA in Beijing in 2014. The thermolysis of fluoropolymers contributed 0.6–6.1 ng L−1 of rainwater TFA, accounting for 1.6–14.0% of the TFA burden from all the precursors which were considered here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call