Abstract

The contribution of DNA ploidy to radiation sensitivity was investigated in a group of eight human tumour cell lines. As previous studies suggest, while more aneuploid tumours tend to be more radioresistant, there is no significant relationship between ploidy and radiation sensitivity (SF2). The failure to observe a significant effect of ploidy on radiation sensitivity is due to the complex and multifactorial basis of radiation sensitivity. When we determined the relationship between survival and radiation-induced chromosome aberration frequency, a measure independent of most other modifiers of sensitivity, we observed a direct relationship between ploidy and mean lethal aberration frequency. The mean lethal frequency of aberrations increased from about 1 for diploid cells to about 2 for tetraploid cells. The mean lethal frequency of aberrations was independent of DNA repair variations. These observations demonstrate that changes in DNA ploidy are an important contributor to radiation sensitivity variations in human tumour cell lines. Therefore, any battery of predictive assays should include DNA ploidy measurements. © 1999 Cancer Research Campaign

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.