Abstract

The kinetics of martensitic transformation in austenitic Fe-Ni-Mo alloys depends on the carbon content. Analysis of carbon redistribution between f.c.c. solid solution and dislocation has been carried out with the help of internal friction (amplitude and temperature effects) study and stress relaxation tests. The martensitic transformation was proved by magnetic induction and thermal differential analyses. The increase of carbon content in quenched austenitic alloys leads to the saturation of dislocation atmospheres and to the supersaturation of f.c.c. solid solution. The type of martensitic transformation (athermal or isothermal) kinetics depends on different relaxation resistance of austenite which is controlled by different dislocation pinning degree. The strong correlation between the degree of dislocation pinning, the type of martensitic transformation and the: stress relaxation effect allows to make the conclusion that the dislocation mobility plays an important role in the nucleation and formation of the low temperature structure of Fe-Ni-Mo alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.