Abstract

Food producers have focused on novel and attractive raw materials with functional properties. Cornelian cherry (Cornus mas L.) fruits contain numerous compounds that may be beneficial for health. Objective: This study aimed to compare and assess the physicochemical properties and amygdalin levels in brandy and liquor prepared from frozen cornelian cherry fruits. Density functional theory-based B3LYP functionals were used to analyze the spectral and optical properties of amygdalin. The contents of the compounds and volatile products of amygdalin decay were found in two spirituose beverages of Cornus mas, using HPLC and GC-MS. Significant differences in their physicochemical properties were detected between the samples. Alcoholic beverages based on cornelian cherry fruits were rich in a wide range of functional ingredients with a low concentration of amygdalin. In silico analysis showed that orbital density diffusion has a major effect on the physical properties of amygdalin, while differences between the polarities of water and ethanol had no noticeable effect on the spectral properties of the compound. Cornelian cherry-based alcoholic drinks might be interesting functional products with rich aromatic bouquets. The amygdalin concentration is low enough to pose no toxicological threat, but rather shapes the tastory bouquet of the products. Levels of amygdalin may be controlled using the same analytical methods for solutions with different ethanol–water ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call