Abstract

ABSTRACT Interplanetary dust grains originate from a variety of source bodies, including comets, asteroids, and Edgeworth–Kuiper belt objects. Centaurs, generally defined as those objects with orbits that cross the outer planets, have occasionally been observed to exhibit cometary-like outgassing at distances beyond Jupiter, implying that they may be an important source of dust grains in the outer Solar system. Here, we use an interplanetary dust grain dynamics model to study the behaviour and equilibrium distribution of Centaur-emitted interplanetary dust grains. We focus on the five Centaurs with the highest current mass-loss rates: 29P/Schwassmann-Wachmann 1, 166P/2001 T4, 174P/Echeclus, C/2001 M10, and P/2004 A1, which together comprise 98 per cent of the current mass loss from all Centaurs. Our simulations show that Centaur-emitted dust grains with radii s < 2 μm have median lifetimes consistent with Poynting–Robertson (P–R) drag lifetimes, while grains with radii s > 2 μm have median lifetimes much shorter than their P–R drag lifetimes, suggesting that dynamical interactions with the outer planets are effective in scattering larger grains, in analogy to the relatively short lifetimes of Centaurs themselves. Equilibrium density distributions of grains emitted from specific Centaurs show a variety of structure including local maxima in the outer Solar system and azimuthal asymmetries, depending on the orbital elements of the parent Centaur. Finally, we compare the total Centaur interplanetary dust density to dust produced from Edgeworth–Kuiper belt objects, Jupiter-family comets, and Oort cloud comets, and conclude that Centaur-emitted dust may be an important component between 5 and 15 au, contributing approximately 25 per cent of the local interplanetary dust density at Saturn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call