Abstract
The dimeric interface of the leucine zipper coiled coil from GCN4 has been used to probe the contributions of hydrophobic and hydrogen bonding interactions to protein stability. We have determined the energetics of placing Ile or Asn residues at four buried positions in a two-stranded coiled coil. As expected, Ile is favored over Asn at these buried positions, but not as much as predicted by considering only the hydrophobic effect. It appears that interstrand hydrogen bonds form between the side-chains of the buried Asn residues and these contribute to the conformational stability of the coiled-coil peptides. However, these contributions are highly dependent on the locations of the Asn pairs. The effect of an Ile to Asn mutation is greatest at the N terminus of the peptide and decreases almost twofold as we move the substitution from the N to C-terminal heptads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.