Abstract

Since 2008, spotted-wing drosophila, Drosophila suzukii, has become a major pest of soft, thin-skinned fruits in the USA, causing significant annual yield losses. Historically, the native blueberry maggot fly, Rhagoletis mendax, has been a key blueberry pest in eastern North America and a driver of insecticide usage. After its invasion in 2011 into New Jersey (USA), D. suzukii has supplanted R. mendax as the main target of insecticide applications in the state. However, the impact of D. suzukii on the native R. mendax has not been documented, particularly in relation to local climate. Historical monitoring data from New Jersey blueberry farms were used to assess the role of climate on R. mendax and D. suzukii populations. Seasonal trap captures of R. mendax adults have decreased after D. suzukii invasion, while D. suzukii trap captures have increased. Similarly, D. suzukii first captures have occurred earlier each year, while R. mendax has been captured later in the growing season. Winter freezing and summer growing degree days were found to significantly correlate with D. suzukii activity. Using downscaled climate simulations, we projected that D. suzukii will arrive in New Jersey blueberry fields up to 5 days earlier on average by 2030 and 2 weeks earlier by 2050 with warming temperatures, exacerbating yield losses and insecticide usage. As regional temperatures are projected to warm and the invasive range continues to expand, we predict the rate of phenological development of the invasive D. suzukii and its impact on native insects to change noticeably, bringing new challenges for pest management strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call