Abstract

A theoretical description of the contrast-imaging function is derived for tilted specimens that exhibit weak-phase object characteristics. We show that the tilted contrast-imaging function (TCIF) is a linear transformation, which can be approximated by the convolution operation for small tilt angles or for small specimens. This approximation is not valid for electron tomography, where specimen tilts are above 60° and specimen dimensions amount to some 10 μm. The approximation also breaks down for electron crystallography, where atomic resolution is to be achieved. Therefore, we do not make this approximation and propose a generalized algorithm for inverting the TCIF. The implications of our description are discussed in the context of electron tomography, single particle analysis, and electron crystallography, and the improved resolution is quantitatively demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.