Abstract

We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given increasing homeomorphism of an open interval $J\subset (0,\infty )$ and $f\: (0,\infty )\rightarrow J$ is an unknown continuous function. In a series of papers by P. Kahlig and J. Smítal it was proved that the range of any non-constant solution is an interval whose end-points are fixed under $\varphi $ and which contains in its interior no fixed point except for $1$. They also provide a characterization of the class of monotone solutions and prove a necessary and sufficient condition for any solution to be monotone. In the present paper we give a characterization of the class of continuous solutions of this equation: We describe a method of constructing solutions as pointwise limits of solutions which are piecewise monotone on every compact subinterval. And we show that any solution can be obtained in this way. In particular, we show that if there exists a solution which is not monotone then there is a continuous solution which is monotone on no subinterval of a compact interval $I\subset (0,\infty )$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.