Abstract
In this paper, we presented an ε-accurate approach to conduct a continuous optimization on the pollution routing problem (PRP). First, we developed an ε-accurate inner polyhedral approximation method for the nonlinear relation between the travel time and travel speed. The approximation error was controlled within the limit of a given parameter ε, which could be as low as 0.01% in our experiments. Second, we developed two ε-accurate methods for the nonlinear fuel consumption rate (FCR) function of a fossil fuel-powered vehicle while ensuring the approximation error to be within the same parameter ε. Based on these linearization methods, we proposed an ε-accurate mathematical linear programming model for the continuous PRP (ε-CPRP for short), in which decision variables such as driving speeds, travel times, arrival/departure/waiting times, vehicle loads, and FCRs were all optimized concurrently on their continuous domains. A theoretical analysis is provided to confirm that the solutions of ε-CPRP are feasible and controlled within the predefined limit. The proposed ε-CPRP model is rigorously tested on well-known benchmark PRP instances in the literature, and has solved PRP instances optimally with up to 25 customers within reasonable CPU times. New optimal solutions of many PRP instances were reported for the first time in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.