Abstract
For any (nonconstant) meromorphic function, we present a real analytic dynamical system, which may be interpreted as an infinitesimal version of Newton's method for finding its zeros. A fairly complete description of the local and global features of the phase portrait of such a system is obtained (especially, if the function behaves not too bizarre at infinity). Moreover, in the case of rational functions, structural stability aspects are studied. For a generic class of rational functions, we give a complete graph-theoretical characterization, resp. classification, of these systems. Finally, we present some results on the asymptotic behaviour of meromorphic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.