Abstract

Evolution in modern life requires high replication fidelity to allow for natural selection. A simulation model utilizing simulated phenotype data on cellular probability of survival was developed to determine how self-replication fidelity could evolve in early life. The results indicate that initial survivability and replication fidelity both contribute to overall fitness as measured by growth rates of the cell population. Survival probability was the more dominant feature, and evolution was possible even with zero replication fidelity. A derived formula for the relationship of survival probability and replication fidelity with growth rate was consistent with the simulated empirical data. Quantitative assessment of continuity and other evidence was obtained for a saltation (non-continuous) evolutionary process starting from low to moderate levels of survival probability and self-replication fidelity to reach the high levels seen in modern life forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call