Abstract

Multi-Walled CNT (MWCNT) are synthesized on a silicon wafer and sputter coated with a gold film. The planar surfaces are mounted on the tip of a piezo-electric actuator and mated with a gold coated hemispherical surface to form an electrical contact. These switching contacts are tested under conditions typical of MEMS relay applications; 4V, with a static contact force of 1mN, at a low current between 20-50mA. The failure of the switch is identified by the evolution of contact resistance which is monitored throughout the switching cycles. The results show that the contact resistance can be stable for up to 120 million switching cycles, which are 106 orders of higher than state-of-the-art pure gold contact. Bouncing behavior was also observed in each switching cycle. The failing mechanism was also studied in relation to the contact surface changes. It was observed that the contact surfaces undergo a transfer process over the switching life time, ultimately leading to switching failure the number of bounces is also related to the fine transfer failure mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.