Abstract
The plane contact problem for an elastic rectangle into which two symmetrically positioned punches are impressed is considered. Homogeneous solutions are constructed that leave the side faces of the rectangle stress-free. When the modified boundary conditions using generalized orthogonality of the homogeneous solutions are satisfied, the problem reduces to a Friedholm integral equation of the first kind in the function describing the displacement of the surface of the rectangle outside the contact area. This function is sought in the form of the sum of a trigonometric series and a power function with a root singularity. The ill-posed infinite system of algebraic equations thereby obtained is regularized by introducing a small positive parameter (Ref. Kalitkin NN. Numerical Methods. Moscow: Nauka; 1978), and, after reduction, has a stable regularized solution. Since the matrix elements of the system are determined by a poorly converging number series, an effective method was developed for calculating the residues of the series. Formulae are found for the contact pressure distribution function and dimensionless indentation force. Since the first formula contains a third-order derivative of the functional series, when it is used, a numerical differentiation procedure is employed (Refs. Kalitkin NN. Numerical Methods. Moscow: Nauka; 1978; Danilina NI, Dubrovskaya NS, Kvasha OP et al. Numerical Methods. Textbook for Special Colleges. Moscow: Vysshaya Shkola; 1976). Examples of a calculation for a plane punch are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.