Abstract

Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals, matrix pores and fluids, the construction of shale rock physics model is significant for the exploration and development of shale reservoirs. To make a better characterization of shale gas-bearing reservoirs, we first propose a new but more suitable rock physics model to characterize the reservoirs. We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs. Moreover, we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs. Based on the parameter analysis using the constructed rock physics model, we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter, the matrix porosity, and the types of filled fluids. We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio. Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call