Abstract

Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. Here we construct the operational matrix of fractional derivative of order α in the Caputo sense using the linear B-spline functions. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus we can solve directly the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the new technique presented in the current paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.