Abstract

AbstractOnly a vanishingly small proportion of the almost infinite number of possible proteins occur in nature. Can this remaining potential of structural and functional diversity be used in the construction of new proteins? Is a “second evolution” of proteins and enzymes about to occur? These questions have suddenly become of interest because the recombinant DNA technique allows the synthesis of any given amino acid sequence. Examples of enzyme models demonstrate clearly that the unusual catalytic properties of enzymes are associated with the presence of a specifically folded polypeptide chain which has a complex three‐dimensional form. The critical hurdle in the path of artificial proteins is thus the design of amino acid sequences which are able to fold into tertiary structures. — Recent studies on the topology and the mechanism of folding have provided considerable insight into the occurrence of, and the rules governing the three‐dimensional architecture of proteins. Secondary structures apparently play a key role in the folding process; helices and “β‐structures” act as nucleation centers directing folding and account for the surprisingly small number of different folding topologies. The problem of secondary structure formation can be investigated directly by means of conformational studies on model peptides. Oligopeptides with tailormade physicochemical, structural and conformational properties can already be designed. The theoretical and experimental basis for the construction of polypeptides with stable tertiary structures is therefore established. The path to macromolecules with an immense variety of novel properties lays before us.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.