Abstract

AbstractBACKGROUNDβ‐Carotene (BC) is difficult to apply effectively in the food industry due to its low solubility and bioavailability. This work aimed to fabricate Moringa oleifera seed protein (MOSP) stabilized emulsions as delivery vehicles for BC and investigate the effect of aqueous phase conditions including pH and ionic strength on this system.RESULTSAll MOSP samples were positively charged and the particle size of MOSP increased with the increase of pH. At pH 5.0 and 0.2 mol L−1 sodium chloride (NaCl), the MOSP emulsion demonstrated the highest stability coefficient and minimal creaming index, while exhibiting a lower release rate in vitro digestion. The rheological behavior of all MOSP emulsions within the frequency range of 0.1–10 Hz was dominated by viscoelasticity, forming an elastic network structure through dispersed droplets. Additionally, the MOSP emulsion loaded with BC prepared at pH 5.0 and 0.2 mol L−1 NaCl displayed enhanced ultraviolet light stability (52.31 ± 0.03% and 51.86 ± 0.05%) as well as thermal stability (72.39 ± 8.67% and 86.78 ± 10.69%). Furthermore, the BC in the emulsion at pH 7.0 exhibited favorable stability (65.14 ± 0.02%) and optimal bioaccessibility (40.30 ± 0.04%) in vitro digestion.CONCLUSIONThe results provided reference data for utilizing MOSP as a novel emulsifier and broadening the application of BC in the food industry. © 2024 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.