Abstract

This paper constructs an algorithm for youth school violence recognition and an occupational therapy education model for victims through the extraction of action speech features. For the characteristics of violent actions and daily actions, action features in time and frequency domains are extracted and action categories are recognized by BP neural network; for complex actions, it is proposed to decompose complex actions into basic actions to improve the recognition rate; then, LDA dimensionality reduction algorithm is introduced for the problem of the high complexity of algorithm due to high dimensionality of features, and the feature dimensionality is reduced to 8 dimensions by LDA dimensionality reduction algorithm, which reduces the system running time by about 51% and improves the accuracy of violent action recognition by 3.3% while ensuring the overall performance of the system. The LDA dimensionality reduction algorithm reduces the number of features to 8 dimensions, which reduces the running time of the system by 51%, increases the accuracy rate of violent action recognition by 3.3%, and increases the recall rate of violent action recognition by 8.86% while ensuring the overall performance of the system. Based on the classical D-S theory, we proposed an improved D-S evidence fusion algorithm by modifying the original evidence model with a new probability distribution function and constructing new fusion rules, which can solve the fusion conflict problem well. The recall rate for violent actions is increased to 90.0%, thus reducing the missed alarm rate of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.