Abstract

This paper studies the rheological behavior of a dilute suspension of spherical microcapsules, i.e. spherical thin elastic membranes filled with an incompressible liquid. Previous results obtained for the motion of such capsules freely suspended in a simple shear flow are first extended to general linear shear flows. Then the stresslet term in the external flow is computed to order ϵ 2, where ϵ, assumed to be small with respect to unity, is the ratio of viscous to elastic forces acting on the particle. The resulting constitutive equation is of the viscoelastic type and is similar to the one obtained for liquid droplets. It predicts that the microcapsule suspension exhibits a shear dependent viscosity and normal stress effects. The exact dependency of these phenomena on the microscopic parameters of the suspension is explicitly provided by the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call