Abstract

The compressive and tensile stress–strain relationship and fracture behavior of a new low-cost titanium alloy Ti–5Al–3V–2Cr–2Fe (Ti–5322) at 286–573 K, a strain rate of 0.0001–4300 s−1 and a stress triaxiality of 0.43–1.6 were studied. Based on the experimental data, the flow and fracture behavior of Ti–5322 was established based on the Johnson–Cook (J–C) equation. Ballistic impact tests were used to study the ballistic performance of a 7-mm-thick Ti–5322 target and the accuracy of the constitutive model was verified from the ballistic test results. The experimental results showed that the yield strength and strain rate of the Ti–5322 were related logarithmically. As the strain rate increased, the rate-strengthening behavior of the material weakened gradually. The material had an obvious thermal-softening behavior and the yield strength decreased linearly with an increase in deformation temperature. The stress triaxiality and strain rate had a significant effect on the fracture behavior of Ti–5322. The material fracture strain decreased with the stress triaxiality and an increase in strain rate. The J–C constitutive model was a good predictor for the ultimate penetration velocity of the Ti–5322 target and the velocity decay of fragments during penetration. The ballistic limit velocity of the 10-mm-diameter tungsten-alloy ball to the 7-mm-thick Ti–5322 target at 0° and 30° was 416.0 m/s and 484.8 m/s, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call