Abstract
Adhesion GPCRs (aGPCRs) form the second largest, yet most enigmatic class of the GPCR superfamily. Although the physiologic importance of aGPCRs was demonstrated in several studies, the majority of these receptors is still orphan with respect to their agonists and signal transduction. Recent studies reported that aGPCRs are activated through a tethered peptide agonist, coined the Stachel sequence. The Stachel sequence is the most C-terminal part of the highly conserved GPCR autoproteolysis-inducing domain. Here, we used cell culture-based assays to investigate 2 natural splice variants within the Stachel sequence of the orphan Gs coupling aGPCR GPR114/ADGRG5. There is 1 variant constitutively active in cAMP assays (∼25-fold over empty vector) and sensitive to mechano-activation. The other variant has low basal activity in cAMP assays (6-fold over empty vector) and is insensitive to mechano-activation. In-depth mutagenesis studies of these functional differences revealed that the N-terminal half of the Stachel sequence confers the agonistic activity, whereas the C-terminal part orientates the agonistic core sequence to the transmembrane domain. Sequence comparison and functional testing suggest that the proposed mechanism of Stachel-mediated activation is relevant not only to GPR114 but to aGPCRs in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.