Abstract
We prove that there is no fpt-algorithm that can approximate the dominating set problem with any constant ratio, unless FPT = W[1]. Our hardness reduction is built on the second author's recent W[1]-hardness proof of the biclique problem [25]. This yields, among other things, a proof without the PCP machinery that the classical dominating set problem has no polynomial time constant approximation under the exponential time hypothesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.