Abstract

There is a growing body of evidence for the importance of the nuclear matrix in various nuclear events including gene expression and DNA replication. Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a nuclear matrix-associated protein that has been suggested to play an important role in EBV-induced transformation. To define the biological significance of the association of EBNA-LP with the nuclear matrix, we mapped the domain of EBNA-LP responsible for nuclear matrix association and investigated the functions of the EBNA-LP mutant mutagenized by substitution of alanines for the cluster of arginine residues in the mapped region. The results of the present study were as follows. (i) Transiently expressed EBNA-LP in COS-7 or BOSC23 cells was associated with the nuclear matrix, similarly to that in EBV-infected B cells. (ii) Mutational analysis of EBNA-LP revealed that a 10-amino acid segment of EBNA-LP is critical for nuclear matrix association of the protein. Interestingly, the identified region overlapped with the region CR2 of EBNA-LP conserved among a subset of primate gammaherpesviruses. The identified segment is referred to as EBNA-LP NMTS (nuclear matrix targeting signal). (iii) The EBNA-LP mutant with the arginine to alanine substitutions in NMTS was no longer localized not only to the nuclear matrix but also to the nucleus. (iv) The EBNA-LP mutant lacked its ability to coactivate EBNA-2-dependent transactivation. These results indicated that EBNA-LP needs to be localized in the nucleus and/or associated with the nuclear matrix through CR2 to elicit its function such as the coactivation of the EBNA-2-dependent transcriptional activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call