Abstract

Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to generate heme. Despite recent research on the reaction mechanism of ferrochelatase, the precise roles and localization of individual active site residues in catalysis, particularly those involved in the insertion of the ferrous iron into the protoporphyrin IX substrate, remain controversial. One outstanding question is from which side of the macrocycle of the bound porphyin substrate is the ferrous iron substrate inserted. Pre-steady state kinetic experiments done under single-turnover conditions conclusively demonstrate that metal ion insertion is pH-dependent, and that the conserved active site His-Glu pair coordinately catalyzes the metal ion insertion reaction. Further, p[Formula: see text] calculations and molecular dynamic simulations indicate that the active site His is deprotonated and the protonation state of the Glu relates to the conformational state of ferrochelatase. Specifically, the conserved Glu in the open conformation of ferrochelatase is deprotonated, while it remains protonated in the closed conformation. These findings support not only the role of the His-Glu pair in catalyzing metal ion insertion, as these residues need to be deprotonated to bind the incoming metal ion, but also the importance of the relationship between the protonation state of the Glu residue and the conformation of ferrochelatase. Finally, the results of this study are consistent with our previous proposal that the unwinding of the [Formula: see text]-helix, the major structural determinant of the closed to open conformational transition in ferrochelatase, is associated with the Glu residue binding the Fe[Formula: see text] substrate from a mitochondrial Fe[Formula: see text] donor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call