Abstract

Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under laboratory conditions and this makes large scale production of these compounds very challenging. Here, we characterize the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and provide evidence that it coordinates production of the antibiotic chloramphenicol with sporulation. MtrAB are known to coordinate DNA replication and cell division in Mycobacterium tuberculosis where TB-MtrA is essential for viability but MtrB is dispensable. We deleted mtrB in S. venezuelae and this resulted in a global shift in the metabolome, including constitutive, higher-level production of chloramphenicol. We found that chloramphenicol is detectable in the wild-type strain, but only at very low levels and only after it has sporulated. ChIP-seq showed that MtrA binds upstream of DNA replication and cell division genes and genes required for chloramphenicol production. dnaA, dnaN, oriC, and wblE (whiB1) are DNA binding targets for MtrA in both M. tuberculosis and S. venezuelae. Intriguingly, over-expression of TB-MtrA and gain of function TB- and Sv-MtrA proteins in S. venezuelae also switched on higher-level production of chloramphenicol. Given the conservation of MtrAB, these constructs might be useful tools for manipulating antibiotic production in other filamentous actinomycetes.

Highlights

  • Streptomyces secondary metabolites account for two thirds of all known antibiotics and numerous other compounds that are used in human medicine as anticancer, antiparasitic, antiviral and immunosuppressant drugs (Devine et al, 2017)

  • An mtrA mutant has been generated in Streptomyces coelicolor (Clark et al, 2013) so presumably mtrA does not affect viability, but this will require chloramphenicol, which is reported to be switched off in wildtype S. venezuelae NRRL B-65442 (Fernández-Martínez et al, 2014)

  • Chloramphenicol biosynthesis is presumably switched on much earlier in the growth cycle of the mtrB strain because we detect the antibiotic in actively growing cultures (12 h) and cultures that are differentiating into aerial hyphae and spores (16–36 h, Figures 1, 2)

Read more

Summary

Introduction

Streptomyces secondary metabolites account for two thirds of all known antibiotics and numerous other compounds that are used in human medicine as anticancer, antiparasitic, antiviral and immunosuppressant drugs (Devine et al, 2017) Discovery of these natural products peaked in the 1950s but there has been a resurgence of interest in the 21st century, driven by genome sequencing and the increasing threat of drug resistant infections (Katz and Baltz, 2016). Despite their importance we still have a poor understanding of how Streptomyces bacteria control the production of their secondary metabolites. Altering a sensor kinase to block its phosphatase activity can result in a response regulator that cannot be dephosphorylated and is rendered constitutively active (Salazar and Laub, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call