Abstract

We propose a computational technique to constrain the vibrational modes of a classical molecule to have energy greater than the quantum zero-point energy (ZPE). The trajectory of any mode with energy less than ZPE is projected to a neighboring point in phase space where the energy is equal to the ZPE and the phase angle of the mode is unchanged. All other modes are then perturbed in such a way as to conserve the total energy of the system. This technique is similar in principle to the method of holonomic constraints. We apply this ‘‘semiholonomic’’ TRAPZ (trajectory projection onto ZPE orbit) scheme to the two mode Hénon–Heiles system and find that it results in a decrease of ergodicity. Periodic limit cycle internal vibrational energy redistribution is observed. Implications of this method for the conservation of ZPE in quasiclassical trajectory simulations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.