Abstract

The extracellular lipase from Penicillium camembertii has unique substrate specificity restricted to mono- and diglycerides. The enzyme is a member of a homologous family of lipases from filamentous fungi. Four of these proteins, from the fungi Rhizomucor miehei, Humicola lanuginosa, Rhizopus delemar and P. camembertii, have had their structures elucidated by X-ray crystallography. In spite of pronounced sequence similarities the enzymes exhibit significant differences. For example, the thermostability of the P. camembertii lipase is considerably lower than that of the H. lanuginosa enzyme. Since only the P. camembertii enzyme lacks the characteristic long disulfide bridge, corresponding to Cys22-Cys268 in the H. lanuginosa lipase, we have engineered this disulfide into the former enzyme in the hope of obtaining a significantly more stable fold. The properties of the double mutant (Y22C and G269C) were assessed by a variety of biophysical techniques. The extra disulfide link was found to increase the melting temperature of the protein from 51 to 63 degrees C. However, no difference is observed under reducing conditions, indicating an intrinsic instability of the new disulfide. The optimal temperature for catalytic activity decreased by 10 degrees C and the optimum pH was shifted by 0.7 units to more acidic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.