Abstract

Preterm birth is a major cause of perinatal mortality and long-term morbidity. Chorioamnionitis is a common cause of preterm birth. Clinical chorioamnionitis, characterised by maternal fever, leukocytosis, tachycardia, uterine tenderness, and preterm rupture of membranes, is less common than subclinical/histologic chorioamnionitis, which is asymptomatic and defined by inflammation of the chorion, amnion, and placenta. Chorioamnionitis is often associated with a fetal inflammatory response. The fetal inflammatory response syndrome (FIRS) is defined by increased systemic inflammatory cytokine concentrations, funisitis, and fetal vasculitis. Clinical and epidemiological studies have demonstrated that FIRS leads to poor cardiorespiratory, neurological, and renal outcomes. These observations are further supported by experimental studies that have improved our understanding of the mechanisms responsible for these outcomes. This paper outlines clinical and experimental studies that have improved our current understanding of the mechanisms responsible for chorioamnionitis-induced preterm birth and explores the cellular and physiological mechanisms underlying poor cardiorespiratory, neural, retinal, and renal outcomes observed in preterm infants exposed to chorioamnionitis.

Highlights

  • Review ArticleClinical and epidemiological studies have demonstrated that fetal inflammatory response syndrome (FIRS) leads to poor cardiorespiratory, neurological, and renal outcomes

  • Preterm birth is a major cause of perinatal mortality and long-term morbidity

  • This paper outlines clinical and experimental studies that have improved our current understanding of the mechanisms responsible for chorioamnionitis-induced preterm birth and explores the cellular and physiological mechanisms underlying poor cardiorespiratory, neural, retinal, and renal outcomes observed in preterm infants exposed to chorioamnionitis

Read more

Summary

Review Article

Clinical and epidemiological studies have demonstrated that FIRS leads to poor cardiorespiratory, neurological, and renal outcomes. These observations are further supported by experimental studies that have improved our understanding of the mechanisms responsible for these outcomes. This paper outlines clinical and experimental studies that have improved our current understanding of the mechanisms responsible for chorioamnionitis-induced preterm birth and explores the cellular and physiological mechanisms underlying poor cardiorespiratory, neural, retinal, and renal outcomes observed in preterm infants exposed to chorioamnionitis. Late preterm births include infants delivered between 34 and 36 weeks and 6 days of gestation. Survival of extremely preterm infants has improved over the past decade, with the threshold of viability (defined as the gestational age at which 50% of infants survive) falling to less than 24 weeks [7]. The World Health Organisation estimates there are 15 million preterm births globally and 1 million direct fatalities annually [4]

Journal of Pregnancy
Findings
Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.