Abstract

In this paper we prove that all bent functions in the Kerdock code, except for the coset of the symmetric quadratic bent function, are bent–negabent. In this direction, we characterize the set of quadratic bent–negabent functions and show some results connecting quadratic bent–negabent functions and the Kerdock code. Further, we note that there are bent–negabent preserving nonsingular transformations outside the well known class of orthogonal ones that might provide additional functions in the bent–negabent set. This is the first time we could identify non-orthogonal (nonsingular) linear transformations that preserve bent–negabent property for a special subset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.