Abstract

This paper presents research on the influence of suspended sediments on selected aspects of a reservoir’s functioning. As the amount of sediment suspended in water (SS) there was found to correlate significantly with sedimentation rate (Us), it was possible to develop a function allowing the rate of accumulation of sediments to be predicted by reference to known amounts of suspended sediment. The latter factor was also shown to correlate significantly with the content of organic matter in suspension (OMSS), in sediment captured in a sediment trap (OMS), and of bottom sediment (OMSB). Analysis of amounts of suspended sediment can provide for estimates of total loads of organic pollutants deposited in the sediments of a reservoir. A further significant correlation with SS was noted for the concentration of total phosphorus in water (TPW), confirming the importance of internal production where the circulation of this biogenic substance in a reservoir ecosystem is concerned. Analysis of stable carbon isotopes in turn showed that entrapped sediments were depleted of—or enriched in—13C, in line with whether concentrations of total P in those sediments (TPS) were at their highest or lowest levels. This dependent relationship may thus be of key importance in assessing sources of phosphorus, as well as in forecasting concentrations present in reservoir sediments. The results obtained make it clear that sediments suspended in the water of a reservoir unify phenomena and processes ongoing there, between elements of the water-sediment system.

Highlights

  • In recent years, along with the constantly growing world population, issues related to water scarcity have become a priority

  • This process was in turn related directly to the most intensive accumulation of Variability characterising the content of suspended sediment in water correlated closely with suspended sediments insedimentation water taking place near The the inflow

  • Most sediment accumulated close to the reservoir inflow, while only a relatively small sediment load was still being transported near the dam

Read more

Summary

Introduction

Along with the constantly growing world population, issues related to water scarcity have become a priority. Of the many functions of dam reservoirs, the most important is water supply, which largely depends on the reservoir capacity [2,3]. The issues related to the loss of reservoir capacity will continue to pose a serious challenge in terms of effectively reducing this phenomenon [4,5]; according to statistics from 1901 to 2010, the capacity of large reservoirs in the world decreased by. It is estimated that over the 25–50 years, approximately 1/4 of the world’s retention reservoirs may lose their water storage capacity [1]. In order to eliminate negative effects, environmental and socio-economic associated with the risk of water shortage, it is recommended to develop integrated methods for forecasting degradation and silting processes of retention reservoirs [5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call