Abstract

A degeneracy locus is the set of points where a vector-bundle map has rank at most a given integer. Such a set is symmetric or skew-symmetric according as whether the vector-bundle map is symmetric or skew-symmetric. We prove a connectedness result, first conjectured by Fulton and Lazarsfeld, for skew-symmetric degeneracy loci and for symmetric degeneracy loci of even ranks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.