Abstract

In this paper, we define the Conley index $${\mathfrak{h}(D)}$$ for a region of discontinuity D of a piecewise C k discontinuous vector field Z on an n-dimensional compact Riemannian smooth orientable manifold and prove it to be a homotopy invariant. This invariance is obtained by regularization of the discontinuous vector field. We use an adapted form of Lyapunov graph continuation to produce, in a few examples, a regularization of the discontinuous vector field with the property that the dynamics in a regularized neighborhood of D has the same Conley index as $${\mathfrak{h}(D)}$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.