Abstract

Colletotrichum graminicola is an economically significant fungal pathogen of maize. The primary infective conidia of the fungus, falcate conidia, are splash-dispersed during rain events. The adhesion of the falcate conidia triggers germination and is required for the development of infection structures. Falcate conidia are capable of immediate adhesion upon encountering the substrate. We report that rapid adhesion in C. graminicola is polarized, with a single-sided strip of adhesive material running the length of a single side (or face) of the conidium between the tips. This strip of adhesive is co-localized with dynamic transverse actin cables, and both the adhesive strip and actin cables are formed after liberation of the conidium from its conidiogenous cell but prior to adhesion to the infection court. Orientation of conidia upon contact with substrate determines whether they will rapidly adhere, and those which do not initially adhere can be induced to do so by applying force to reorient or “flip” the conidia. We propose that C. graminicola possesses an adhesive mechanism resulting in an adhesion efficiency of approximately 50% upon initial contact with substrata, and that an increase in adhesion efficiency can be induced by disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call