Abstract

Hemoglobin Ypsilanti (HbY) is a stable tetrameric hemoglobin that binds oxygen with little or no cooperativity and with high affinity [Doyle, M. L., et al. (1992) Proteins: Struct., Funct., Genet. 14, 351-362]. It displays an especially large quaternary enhancement effect. An X-ray crystallographic study [Smith, F. R., et al. (1991) Proteins: Struct., Funct., Genet. 10, 81-91] of the carboxy derivative of this hemoglobin (COHbY) revealed a new quaternary structure that partially resembles the recently described R2 structure [Silva, M. M., et al. (1992) J. Biol. Chem. 267, 17248-17256]. Very little is known about either the solution phase conformations of the liganded and deoxy forms of HbY or the molecular basis for the large quaternary enhancement effect (Doyle et al., 1992). In this study, near-IR absorption, Soret-enhanced Raman, and UV (229 nm) resonance Raman spectroscopies are used to probe the liganded and deoxy derivatives of HbY in solution. Nanosecond time-resolved near-IR absorption measurements are used to expose the relaxation properties of the photoproduct of COHbY. Time-resolved (Soret band) absorption is used to generate the geminate and solvent phase ligand rebinding curves for photodissociated COHbY. The spectroscopic results indicate that COHbY has an R-like conformation with respect to both the proximal heme pocket and the hinge region of the alpha 1 beta 2 interface. The deoxy derivative of HbY has spectroscopic features that are very similar to those observed for species assigned to the deoxy R or half-liganded R conformations of human adult hemoglobin (HbA). The 10 ns to 100 micros relaxation properties of the photoproduct of COHbY are distinctly different from those of HbA in that for HbY, little if any tertiary or quaternary relaxation is observed. The near-absence of relaxation in the HbY photoproduct explains the differences in the geminate and solvent phase CO recombination between HbA and HbY. The impact of the conformational and relaxation properties of HbY on the geminate rebinding process forms the basis of a model that accounts for the large quaternary enhancement effect reported for HbY (Doyle et al., 1992). In addition, the spectroscopic data and the X-ray crystallographic results explain the slow relaxation for HbY and the near-absence of cooperative ligand binding for this protein based on the behavior of the penultimate tyrosines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.