Abstract

AbstractThe Helmholtz equation describes a lot of physical processes. For example, in quantum chaos some model systems are described by the Helmholtz equation with appropriate boundary conditions. One of them is the quantum billiard problem (see [Bu01], [Gr01], [Gu90], [KoSc97], [Si00], and [Si70]).Generic billiards are one of the simplest examples of conservative dynamical systems with chaotic classical trajectories. According to this model, the particle is trapped inside the simply corrected region D with the boundary S, in which it can move freely and this movement is ballistic.In this case, the Schrödinger equation for a free particle assumes the form of the Helmholtz equation (see [Gr01], [Gu90], [Si00], and [Si70]).This chapter deals with the two-dimensional homogeneous problem for the Helmholtz equation in the finite domain D with the boundary S. The following problem is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.