Abstract

Using the recently proposed nonlinear gauge condition [Formula: see text] we show the area law behavior of the Wilson loop and the linear dependence of the instantaneous gluon propagator. The field configurations responsible for confinement are those in the nonlinear sector of the gauge-fixing condition (the linear sector being the Coulomb gauge). The nonlinear sector is actually composed of "Gribov horizons" on the parallel surfaces ∂ · Aa=fa≠0. In this sector, the gauge field [Formula: see text] can be expressed in terms of fa and a new vector field [Formula: see text]. The effective dynamics of fa suggests nonperturbative effects. This was confirmed by showing that all spherically symmetric (in 4-D Euclidean) fa(x) are classical solutions and averaging these solutions using a Gaussian distribution (thereby treating these fields as random) lead to confinement. In essence the confinement mechanism is not quantum mechanical in nature but simply a statistical treatment of classical spherically symmetric fields on the "horizons" of ∂ · Aa=fa(x) surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.