Abstract
Double-walled carbon nanotubes (DWCNTs) were prepared from methane using a Fe/MgO porous catalyst. A series of catalyst powders with different pore size distributions were obtained by compression at pressures of 0–233 MPa. These were used to decompose methane and synthesize DWCNTs which differed in activity, purity, yield and degree of perfection. Characterization by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, thermo-gravimetric analysis, N 2 adsorption measurement (Brunauer–Emmett–Teller (BET)) and Hg penetration provided direct evidence that a compact catalyst structure is not good for the nucleation and growth of DWCNTs, e.g., a catalyst with a compact structure that did not have pores larger than 30–50 nm mostly produced multi-walled carbon nanotubes. The confined growth and buckling model of DWCNTs inside the porous catalysts are proposed to explain the growth behavior. These results suggest that a porous catalyst for DWCNT synthesis should have a large pore size distribution or loose stacked structure, which provides new guidelines for catalyst design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.