Abstract
Conductive composite fabrics were prepared by chemical polymerization of aniline on poly(ethylene terephthalate) (PET) fabrics in the aqueous hydrochloride acid solutions using potassium dichromate as the oxidant. The effect of the polymerization conditions such as temperature, oxidant, aniline and hydrochloride acid concentrations was investigated on the electrical surface resistance and polyaniline (PAn) content of PAn/PET composite fabrics. The maximum PAn content and the lower electrical resistance of composite fabrics were observed at the HCl concentrations of 0.25 M and 1.5 M, respectively. The electrical surface resistance of the PAn/PET composite fabrics was decreased under vacuum five-fold more than the ones kept under in air. The properties of PAn/PET composite fabrics such as density, diameter and moisture regain were also investigated in comparison with the those of pure PET. The conductive composite fabrics were characterized by surface resistance, FTIR and TGA techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.