Abstract

In this report the assessment of the results of recent experimental investigations of heat transfer in turbulent flow of supercritical water and modeling fluids (carbon dioxide, Freon) in vertical channels of different geometry (tubes, annular gaps and rod bundles) is presented. The conditions of similarity and the system of criteria, which determine the intensity of heat exchange in the fluids near the critical point, are considered. Due to the small hydraulic diameter of the heat exchange channels in the core of nuclear reactors it is possible to neglect the gravitational forces compared to the acceleration caused by the thermal inertia effects and the forces of viscosity. Based on these ideas two comprehensive criteria were proposed. Their application in the basic equation of heat transfer suggested by the authors earlier for the normal regimes satisfactorily (with an error of 20–25%) describes the features of change of heat transfer coefficient in the deteriorated and mixed regimes of heat transfer. The system of equations suitable for engineering calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water was developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call