Abstract

Abstract— Thermodynamic analysis of the compositional profiles across large chemically‐zoned Fe, Ni metal grains in the Bencubbin‐like chondrite Queen Alexandra Range (QUE) 94411 suggests that these grains formed by non‐equilibrium gas‐solid condensation under variable oxidizing conditions, isolation degree, and Cr depletion factors. The oxidizing conditions must have resulted from the complete vaporization of nebular regions with enhanced dust/gas ratios (∼ 10–40 × solar). Because the origin of each of the metal grains studied requires different condensation parameters (dust/gas ratio, isolation degree, and Cr depletion factor), a high degree of heterogeneity in the formation region of the Bencubbin‐like chondrite metal is required. To preserve compositional zoning of the metal grains and prevent their melting and sulfidization, the grains must have been removed from the hot condensation region into cold regions where the accretion of the Bencubbin‐like asteroidal body took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.