Abstract

Seawater metal-air batteries (SMABs) are promising energy storage technologies for their advantages of high energy density, intrinsic safety, and low cost. However, the presence of such chloride ions complex components in seawater inevitably has complex effects on the air electrode process, including oxygen reduction and oxygen evolution reactions (ORR and OER), which requires the development of highly-active chloride-resistant electrocatalysts. In this review, we first summarized the developing status of various types of SMABs, explaining their working principle and comparing the battery performance. Then, the reported chlorine-resistant electrocatalysts were classified. The composition and structural design strategies of high-efficient chlorine-resistant ORR/OER electrocatalysts in seawater electrolytes were comprehensively summarized. Finally, the main challenges to be overcome in the commercialization of SMABs were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.