Abstract

AbstractThis paper applies for the first time the Newtonian concept of energy to stock–flow systems and employs it to relate system behaviour to model structure. Kinetic energy and work done are defined analytically using the concepts of loop impact and force from the Newtonian Interpretative Framework and are examined numerically within system dynamics simulations. The energy analogy is used to analyse models by understanding how loops of different orders and types act as energy sources, sinks and exchange, using the system dynamics equivalent of the work–energy theorem. It is shown that energy describes the cumulative effects of feedback on stock behaviour, in contrast to the instantaneous description given by existing methods of loop dominance. This approach gives additional insight over that of existing dominance methods, capturing the dynamical influence of loops even when not dominant. The analogy's explanatory power provides quantitative and informal analysis. © 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.