Abstract

Abstract In this paper it is shown that if the hysteresis loop for a material has a particular shape the damping can be considered adequately by multiplying the modulus of elasticity of the material by the complex number e2bi where 2b is called the complex damping factor. For small values of b it is shown that both for free and forced vibrations of a simple spring-mass system the motion in the case of complex damping is the same as in the case of viscous damping, with b = c/ccr, except that in the steady-state case the phase angles are slightly different. Also, it is shown how complex damping may be applied to cases of forced vibrations of uniform rods and beams. The greatest advantage of using complex damping, however, is in numerical calculations of forced vibrations of engine crankshafts, airplane wings, and other types of structures; and for such calculations it already has been extensively used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.