Abstract

Class invariants—consistency constraints preserved by every operation on objects of a given type—are fundamental to building, understanding, and verifying object-oriented programs. For verification, however, they raise difficulties, which have not yet received a generally accepted solution. The present work introduces a proof rule meant to address these issues and allow verification tools to benefit from invariants. It clarifies the notion of invariant and identifies the three associated problems: callbacks, furtive access, and reference leak. As an example, the 2016 Ethereum DAO bug, in which $50 million was stolen, resulted from a callback invalidating an invariant. The discussion starts with a simplified model of computation and an associated proof rule, demonstrating its soundness. It then removes one by one the three simplifying assumptions, each removal raising one of the three issues and leading to a corresponding adaptation to the proof rule. The final version of the rule can tackle tricky examples, including “challenge problems” listed in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.