Abstract

Linagliptin (BI 1356) is a dipeptidyl peptidase-4 (DPP-4) inhibitor for treatment of Type 2 diabetes which recently gained approval in the US, Europe, and Japan. Linagliptin showed nonlinear pharmacokinetics after intravenous and oral administration, which is due to a concentration-dependent protein binding of linagliptin to its target enzyme DPP-4. The aim of this analysis was to investigate this target-mediated binding of linagliptin and its implication on efficacy and safety. Pharmacokinetic modeling and simulations were performed using a two-compartment model with concentration-dependent binding in the central and in one peripheral compartment. The optimum therapeutic dose with minimal off-target side effects was simulated assuming that an antidiabetic effect of linagliptin was due to the linagliptin concentration bound to DPP-4 and that off-target side effects were related to free linagliptin. The difference between steady state AUCs of specifically bound and free linagliptin was maximized at oral doses of 2 - 5 mg. Since plasma DPP-4 inhibition increased slightly from 2.5 to 10 mg, pharmacokinetic simulations and the pharmacodynamic measurements taken together suggest that 5 mg linagliptin could be considered an optimum dose. Simulations with missed doses and additional doses at steady state showed the effect on DPP-4 bound linagliptin and change in DPP-4 inhibition was minimal after missing one 5 mg oral dose of linagliptin while two doses of 5 mg linagliptin resulted in a less than proportional increase of steady state AUC of free linagliptin. Results from modeling and simulation support a stable antidiabetic effect of linagliptin over 24 h at steady state and further indicate a low risk for off-target side effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.